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Abstract: The digitization of distribution power systems has revolutionized the way data are collected
and analyzed. In this paper, the critical task of harnessing this information to identify irregulari-
ties and anomalies in electricity consumption is tackled. The focus is on detecting non-technical
losses (NTLs) and energy theft within distribution networks. A comprehensive overview of the
methodologies employed to uncover NTLs and energy theft is presented, leveraging measurements
of electricity consumption. The most common scenarios and prevalent cases of anomalies and theft
among consumers are identified. Additionally, statistical indicators tailored to specific anomalies
are proposed. In this research paper, the practical implementation of numerous artificial intelligence
(AI) algorithms, including the artificial neural network (ANN), ANFIS, autoencoder neural network,
and K-mean clustering, is highlighted. These algorithms play a central role in our research, and our
primary objective is to showcase their effectiveness in identifying NTLs. Real-world data sourced
directly from distribution networks are utilized. Additionally, we carefully assess how well statistical
methods work and compare them to AI techniques by testing them with real data. The artificial
neural network (ANN) accurately identifies various consumer types, exhibiting a frequency error of
7.62%. In contrast, the K-means algorithm shows a slightly higher frequency error of 9.26%, while the
adaptive neuro-fuzzy inference system (ANFIS) fails to detect the initial anomaly type, resulting in a
frequency error of 11.11%. Our research suggests that AI can make finding irregularities in electricity
consumption even more effective. This approach, especially when using data from smart meters, can
help us discover problems and safeguard distribution networks.

Keywords: machine learning; energy theft detection; non-technical loss (NTL); autoencoder; artificial
neural networks; ANFIS

1. Introduction

Detecting energy theft and NTLs in distribution power networks is essential for finan-
cial stability, equitable cost sharing, sustainability, reliability, compliance, and data-driven
optimization. It represents a pivotal step towards building a robust, efficient, and fair
energy distribution system. By detecting and addressing these losses, the reliability and
quality of electricity supply can be improved, enhancing customer satisfaction. Minimizing
NTLs contributes to the conservation of resources and aligns with environmental conser-
vation goals. Detecting NTLs is crucial for two key reasons. Firstly, it helps cut down
on financial losses. Secondly, it enhances the reliability and security of distribution net-
works. The digitization of low-voltage networks and the deployment of smart meters have
opened up opportunities for the implementation of various techniques for this purpose.
The size of electrical distribution network datasets has been growing exponentially due
to the widespread adoption of smart metering projects worldwide [1]. Big data, AI, and
various optimization methods have become the main tools for the decision making process,
operation, and control of smart grids. Therefore, AI for NTL detection has the potential to
become part of the standard toolbox for distribution grid controllers.
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Reviews [2–6] have explored the diverse range of measurements applicable to distri-
bution system operators (DSOs) and smart grids for the detection of non-technical and
commercial losses, as well as the theft of electricity. Reference [7] introduces an intelli-
gent energy meter that provides a comprehensive solution for maintaining power quality,
billing, and controlling power theft. Another paper [8] focuses on preventing power
theft in distribution systems using smart hardware devices. A further paper [9] utilizes
state-of-the-art gradient boosting classifiers to detect energy theft in distribution power
systems. In contrast, [10] presents a data analytic approach involving the injection of
false data. Furthermore, [11] proposes an IoT solution for electricity theft prevention. For
electricity theft detection, two methodologies are discussed in [12,13]: the stacked sparse
denoising autoencoder; and the support vector machine. The authors of [14] employ a
variety of data sources to identify manipulated electricity meters using a metric inspired
by entropy. Another paper [15] introduces a pattern-based and context-aware approach
for detecting electricity theft. A further paper [16] uses an ANN for specific energy theft
detection in IEEE 13-node distribution systems with a small number of consumers. The
ANFIS methodology is originally presented in [17] using the inputs of mean, median,
load factor, and other indicators calculated from consumer electricity consumption. The
authors did not use characteristic load diagram indicators, but only mathematical indi-
cators. In another paper [18], autoencoder neural networks are showcased for extracting
abstract behavioral traits from electricity data, thereby establishing an initial alert system
for identifying electricity theft behavior. Moreover, K-means clustering is utilized to assess
users within abnormal distribution regions. Furthermore, the authors of [19] explore the
potential correlation between alterations in electricity consumption by individual users
and the corresponding shift in line loss rates within their station area through a correlation
analysis. The authors of [20] described 120 features of a set of energy consumption data,
which included statistics, ratios, and distributions. In these papers, the authors have not
compared different machine learning (ML) techniques with statistical parameters or serial
sets of numerical consumption inputs. The ML algorithms should not be tied to a specific
test network but should provide a general concept and be applicable to the consumption
data of any distribution network.

ML enables computers to learn and improve their performance without being explicitly
programmed to do that. In the distribution power system, there exists a vast number of
consumers and measurements that require processing and analyses to derive meaningful
conclusions. Machine learning is well suited for this task as it leverages a combination of
statistics, optimization, linear algebra, graph theory, and functional analyses to enable such
capabilities. That is why this paper examines the possibility of applying ML algorithms.
ML techniques can be divided into supervised and unsupervised learning. Inputs for ML
algorithms can include time series data of consumption or other indicators derived from
these measurements. In supervised machine learning, it is essential to have corresponding
output data for each set of input data. This implies that within the measurement database,
it must be documented whether a particular consumer is honest or not. Unsupervised
machine learning, unlike supervised methods, does not rely on specific output data. Instead,
it can group consumers based on similar energy consumption patterns and also highlight
the presence of energy theft and anomalies when they occur. This paper presents five
methodologies for anomaly detection, one of which is based on key statistical indicators.
The classical methodology does not provide such successful results, and it has been replaced
by the following: the ANN, ANFIS, autoencoder neural network, and K-mean clustering.
These four ML algorithms were chosen because they offer clear functionality and intuitively
indicate how inputs, statistical parameters or just energy consumption samples, can be
used for anomaly detection and energy theft purposes.

The main contributions of this paper are as follows:

• The ANN, ANFIS, autoencoder neural network, and K-mean clustering are applied for
power theft detection in a low-voltage power distribution network with 91 consumers
using 15 min annual measurements;
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• Five different realistic scenarios of possible anomalies are established and presented
analytically with statistical indicators;

• The results of four proposed ML algorithms are compared, using energy meter mea-
surements, as well as statistical indicators as inputs;

• The ML algorithms have high success rates for power theft detection, and the classifi-
cation of the anomaly type was achieved;

• Our well-presented application algorithm can be easily replicated in other databases
and distribution power systems.

The initial section of this paper introduces the statistical methodology used for NTL de-
tection. The subsequent sections delve into the application of supervised machine learning
techniques, such as the ANN, ANFIS, and autoencoders. The sixth section demonstrates the
implementation of the K-mean algorithm as part of unsupervised ML. In the final section,
we present the results, comparing all the mentioned methodologies and shedding light on
their respective advantages and disadvantages when applied to NTL detection.

2. Statistical Indicators and Methodology

Statistical indicators and simple if/then rules can be used to detect NTLs [21]. The
approach presented depends on load diagrams which appear in different formats, such
as daily, weekly, monthly, and yearly diagrams. These diagrams are primarily shaped by
the daily load diagram, which is influenced by factors such as the characteristics of the
consumer area, the arrangement of individual consumers within distinct consumer groups,
seasonal fluctuations (e.g., summer or winter), and other relevant considerations [1]. The
daily load diagram comprises three core indicators: the maximum daily load (Pmax [kW]),
minimum daily load (Pmin [kW]), and total daily consumed energy (W [kWh]). Other
characteristic indicators are defined from the basic indicators as follows:

Pmean =
W
24

(1)

m =
W

24Pmax
(2)

T =
W

Pmax
(3)

n =
Pmin
Pmax

(4)

where Pmean—the daily mean load, m—the daily load factor, T—the time of maximum
power utilization, and n—the ratio of the daily minimum to the maximum. The statistical
indicators for anomaly detection are derived from preceding metrics, with their correspond-
ing formulas detailed in Table 1. These statistical indicators are presented and explained
in [20,21]. The coefficient of variation is a statistical measure that represents the ratio of
the standard deviation to the mean of a dataset. It measures the relative variability of a
dataset, allowing for a comparison of the variability between datasets with different units
or scales. The ratio between the peak and valley load is a measure that quantifies the
difference between the maximum, peak, and minimum loads within a given period. The
ratio between the peak and average load measures the relationship between the maximum
load and the mean load over a specific period. The valley coefficient is a metric used to
quantify the depth or magnitude of the lowest load points within a load profile. The load
variance measures the dispersion or spread of load values around the mean load within
a dataset. The time of maximum power utilization refers to the point in time when the
electricity consumption reaches its peak within a given period.
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Table 1. Statistical indicators for anomaly detection.

Indicator Description Code

Coefficient of variation a1 = Pmax
Pmin

Ratio between peak and valley load a2 = Pmin
Pmax

Ratio between peak and average load a3 = Pmax
Pmean

Valley coefficient a4 = max(P i+1 − Pi
)

Load variance a5 = sum(∆P i)

Time of maximum power utilization T =
sum(P)

Pmax

The most straightforward approach to detect NTLs (non-technical losses) entails
comparing characteristic indicators extracted from load diagrams for typical anomalies. By
analyzing load diagrams from both customers with and without incidences of electricity
theft, it becomes possible to determine the threshold values for these indicators.

In instances in which data from customers involved in theft are lacking, it becomes
necessary to develop separate diagrams highlighting specific anomalies. The prevalent
types of electrical energy theft observed in distribution system operators (DSOs) can be
categorized as follows [21]:

1. Multiplying all samples by the same randomly chosen value (lower than one);
2. “On/off” attack in which the consumption is reported as zero during some intervals;
3. Multiplying the consumption by a random value that varies over time;
4. The combination of the second and the third type;
5. Multiplying only the peak loads by the same randomly selected value (lower than one).

A computer simulation is utilized to generate all five anomalies using a dataset of
real 15 min consumption measurements collected over the course of one week from a
household. The obtained annual diagrams for a two-day period are presented in Figure 1.
The same process is conducted for 91 households from the same DSO distribution area.
For all the created diagrams, the statistical indicators are calculated, and their mean values
are presented in Table 2. The second column numbers indicate the limit values for the
statistical indicators. These values can be used for if/then rules to detect anomalies in that
distribution area.
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Table 2. Mean vales for statistical indicators for anomaly detection.

Indicators Honest 1. anom. 2. anom. 3. anom. 4. anom. 5. anom.

a1 43.21 4.37 × 1015 8.12 × 1015 4.31 × 1015 6.06 × 1015 4.61 × 1015

a2 0.0365 0.0356 0 0 0 0.0353
a3 9.17 9.27 11.13 13.37 15.40 9.47
a4 1.46 1.21 1.43 1.20 1.15 1.46
a5 85.78 70.36 75.11 67.56 60.66 85.67
T 105.23 103.67 87.95 70.20 60.44 104.48

Based on the created data, it can be concluded that the conditions that indicate anoma-
lies in the observed distribution network are as follows: a1 > 43.21, a2 < 0.0365, a3 > 9.17,
a4 < 1.46, a5 < 85.78, and T < 105.2327. The following diagrams show the values of indicator
a1 and T for all 91 observed households.

As observed in Figure 2a, some consumers clearly exhibit signs of anomalies and
electricity theft. However, in Figure 2b, the indications are less distinct, with a significant
number of consumers categorized as having NTLs. This becomes particularly concerning
when dealing with a larger consumer base. In such cases, the need arises for machine
learning methods capable of comparing all consumers and their respective indicators
to automatically flag instances of NTLs. The coefficient of variation does not capture
specific patterns within the load profile and may not differentiate between different types
of anomalies. The ratios between the peak and some other load might oversimplify complex
load variations, be sensitive to outliers, or overlook gradual changes or subtle anomalies
in the load profile. The valley coefficient might miss gradual deviations from normal
patterns. The load variance might not capture temporal correlations or specific load
patterns. Indicator T does not consider other aspects of the load profile and may not
capture changes in usage intensity. The example shows that there is no clear definition of
individual parameters, and it is necessary to combine all of them in order to detect NTLs. In
this sense, AI techniques enable the observation of all statistical indicators and the learning
of the patterns that exist among them.
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3. Artificial Neural Networks

Artificial neural networks, ANNs, as a part of supervised ML, are information pro-
cessing systems that show the features of learning and generalization based on the data
they are trained on. These networks consist of many densely connected processor ele-
ments, so-called neurons, which are organized according to some regular architectures.
The ANN is used for the problem of supervised learning, in which there is a database
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with inputs x and exact output values y. The database is structured to include a time
series of 91 consumption records without anomalies every 15 min for one year, denoted
by an output value of 0. Additionally, it contains simulations of five distinct anomalies,
each assigned a unique output value ranging from 1 to 5. The inputs (x) are time series
of consumption with and without anomalies. The outputs (y) are indicators from 0 to 5.
The concept is to train an artificial neural network (ANN) capable of detecting anomalies,
specifically NTLs, and providing insights into the likely type of anomaly involved. At the
beginning, the database is randomly divided into 20, 60, and 20% for testing, training, and
validation, respectively. The test data are not used until the end of the ANN’s design. The
validation data are used to learn the best hyperparameters of the optimized ANN model.
The hyperparameter learning process, known as cross-validation, involves training the
ANN with various combinations of hyperparameters on the training data, while assessing
its performance on the validation data. The training the ANN is accomplished through
the backpropagation algorithm. The frequency of error serves as a performance metric to
evaluate the model’s prediction accuracy. The ideal ANN configuration consists of three
layers with the following number of neurons: 60, 30, and 10. More layers lead to overfitting
and increase the error.

The sigmoid function is used, as it is the most frequently used activation function. The
ANN application algorithm is shown in Figure 3.

Energies 2024, 17, x FOR PEER REVIEW 7 of 19 
 

 

 

Figure 3. The ANN and ANFIS application algorithm. 

The proposed ANN initially provided the best performance with the smallest fre-

quency error of 10.23%; however, it demanded a significant training time exceeding 600 s. 

The frequency error, commonly used as a performance evaluation metric for machine 

learning (ML) algorithms, pertains to the discrepancy in outputs. It is defined as the per-

centage of mismatches in the detection of anomaly types across the entire dataset. Conse-

quently, an alternative approach was employed. In this new design, instead of using the 

time series of consumption as inputs, statistical indicators derived from the time series, 

labeled as a1, a2, a3, a4, a5, and T, were used. The output, in this case, still predicts the type 

of anomaly. As expected, this adjustment in input data led to substantially reduced train-

ing times less than 10 s. The optimal ANN structure for this configuration includes five 

layers with the following number of neurons: 60, 30, 10, 10, and 10. The minimum error 

achieved with this setup is 7.62%. For a visual representation of the testing results under 

this modified approach, please refer to Figure 4.  

Each statistical parameter provides valuable information about the characteristics of 

the load profile, which can aid in distinguishing between normal load patterns and NTLs. 

The coefficient of variation (a1) measures the relative variability of the load profile, provid-

ing insight into the consistency or randomness of the load distribution. The ratio between 

the peak and valley load (a2) highlights the contrast between the highest and lowest load 

values, which can be indicative of abnormal usage patterns. The ratio between the peak 

and average load (a3) indicates the proportion of the peak load relative to the average load, 

which can help detect unusual spikes in consumption. The valley coefficient (a4) quantifies 

the depth of valleys in the load profile, aiding in identifying periods of low consumption. 

The load variance (a5) provides insights into the overall variability of consumption. The 

time of maximum power utilization (T) identifies the time at which the peak load occurs, 

which can be crucial for understanding usage patterns. All the coefficients have some lim-

itations in capturing specific patterns within the load profile, but when all six statistical 

coefficients are used, then the probability that any anomaly will not be noticed decreases. 

When integrated into AI algorithms, such as the ANN, ANFIS, and K-means clustering, 

these statistical indicators enhance the algorithms’ ability to detect NTLs by providing 

them with relevant features that encapsulate different aspects of the load profile. For ex-

ample, the ANN and ANFIS can learn complex relationships between these statistical pa-

rameters and the occurrence of NTLs, while K-means clustering can use these features to 

Figure 3. The ANN and ANFIS application algorithm.

The proposed ANN initially provided the best performance with the smallest fre-
quency error of 10.23%; however, it demanded a significant training time exceeding 600 s.
The frequency error, commonly used as a performance evaluation metric for machine learn-
ing (ML) algorithms, pertains to the discrepancy in outputs. It is defined as the percentage
of mismatches in the detection of anomaly types across the entire dataset. Consequently,
an alternative approach was employed. In this new design, instead of using the time series
of consumption as inputs, statistical indicators derived from the time series, labeled as a1,
a2, a3, a4, a5, and T, were used. The output, in this case, still predicts the type of anomaly.
As expected, this adjustment in input data led to substantially reduced training times less
than 10 s. The optimal ANN structure for this configuration includes five layers with the
following number of neurons: 60, 30, 10, 10, and 10. The minimum error achieved with
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this setup is 7.62%. For a visual representation of the testing results under this modified
approach, please refer to Figure 4.
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Each statistical parameter provides valuable information about the characteristics
of the load profile, which can aid in distinguishing between normal load patterns and
NTLs. The coefficient of variation (a1) measures the relative variability of the load profile,
providing insight into the consistency or randomness of the load distribution. The ratio
between the peak and valley load (a2) highlights the contrast between the highest and
lowest load values, which can be indicative of abnormal usage patterns. The ratio between
the peak and average load (a3) indicates the proportion of the peak load relative to the
average load, which can help detect unusual spikes in consumption. The valley coefficient
(a4) quantifies the depth of valleys in the load profile, aiding in identifying periods of
low consumption. The load variance (a5) provides insights into the overall variability of
consumption. The time of maximum power utilization (T) identifies the time at which the
peak load occurs, which can be crucial for understanding usage patterns. All the coefficients
have some limitations in capturing specific patterns within the load profile, but when all six
statistical coefficients are used, then the probability that any anomaly will not be noticed
decreases. When integrated into AI algorithms, such as the ANN, ANFIS, and K-means
clustering, these statistical indicators enhance the algorithms’ ability to detect NTLs by
providing them with relevant features that encapsulate different aspects of the load profile.
For example, the ANN and ANFIS can learn complex relationships between these statistical
parameters and the occurrence of NTLs, while K-means clustering can use these features to
cluster load profiles and identify outliers associated with NTLs. However, it is essential
to acknowledge that the effectiveness of these statistical indicators depends on various
factors such as data quality, feature selection, and the specific characteristics of the NTL
being detected.
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4. ANFIS

Both ANNs and fuzzy logic systems are capable of regulating nonlinear, dynamic
systems that lack a suitable mathematical model. The drawback of the ANN lies in its
limited interpretability, particularly in terms of understanding how it tackles management
problems. In other words, it lacks transparency in its decision-making process. The ANN
does not possess the capacity to generate structural knowledge, such as rules, nor can it
leverage pre-existing knowledge to expedite the training process. In contrast, fuzzy expert
systems provide transparency in their inferences by employing a set of explicit linguistic
rules, typically in the form of “if/then” statements. However, they lack the presence of
suitable learning algorithms to adapt and refine their performance based on data from
a database.

On the other hand, ANNs do not explicitly define input–output relations through
rules but instead encode these relations in their internal parameters, which are learned
from the data during training. The integration of ANNs and FL has yielded one of the
most successful neuro-fuzzy models known as the ANFIS (adaptive network based fuzzy
inference system). The ANFIS leverages both ANNs and FL to create a versatile and widely
used hybrid model. It functions as an adaptive network that embodies the principles
of fuzzy inference, offering the best of both worlds. A key advantage of the ANFIS is
its adaptability, particularly in deriving membership functions from consumption data
that characterize the system’s behavior with respect to input–output variables. Unlike
traditional fuzzy systems in which manual fuzzification and adjustments of membership
functions are required, the ANFIS automatically forms membership functions based on the
consumption database. Detailed mathematical formulations of the ANFIS are provided
in [17,22]. By utilizing this structure and algorithm, the ANFIS ensures that membership
function parameters are not arbitrarily chosen but rather determined from input–output
data. These parameters evolve through a learning process facilitated by the gradient vector.
The gradient vector gauges how well the fuzzy inference model fits the input–output data
for a given parameter set. Optimization methods are then applied to adjust the parameters
and minimize the error rate, typically measured as the sum of the squared differences
between the actual and desired outputs. The ANFIS employs a hybrid algorithm that
combines the backpropagation gradient descent method with the least squares method
to facilitate learning. The backpropagation algorithm fine-tunes the parameters of the
premise membership functions, while the least squares method adjusts the coefficients of
the linear combination in the conclusion. This iterative adjustment process enables the
ANFIS to continually refine its model based on training input–output sets, ensuring optimal
performance and adaptability in various applications.

The inputs of the ANFIS are the statistical indicators, while the output is the anomaly
number. Therefore, the utilization of the constructed ANFIS will yield a numerical indica-
tion, along with the type of anomaly, if an NTL is detected, and will be zero if an NTL is
not present. The algorithm of creating the ANFIS is shown in Figure 3. The created ANFIS
model is presented in Figure 5. The comparison between the ANFIS and ANN is presented
in Table 3 and Figure 6. The minimum ANFIS error reached is 11.11%. Table 3 illustrates
that the ANN provides more accurate numerical values for identifying anomaly types, with
fewer errors compared to the ANFIS. Specifically, when rounding the numerical values
in the table, the ANN makes a mistake in only one instance, whereas the ANFIS errors in
two cases within the test set presented in the table. Both the table and Figure 6 collectively
suggest that the ANN delivers a superior performance in this context. The ANFIS could im-
prove its performance by obtaining a bigger database and having better data preprocessing.
Also, the fuzzy rule base can be reviewed and refined in the ANFIS model to incorporate
domain knowledge or insights from experts in electricity consumption patterns.
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Table 3. Mean values of statistical indicators for anomaly detection.

Anomaly 3 4 0 2 4 5 1 2 5 1 2 3

ANN
2.99 3.99 0.51 2.00 3.99 5.01 0.89 2.00 5.01 0.81 1.99 3.00

3 4 1 2 4 5 1 2 5 1 2 3

ANFIS
2.83 3.82 0.65 2.36 4.31 4.56 0.49 1.56 4.68 0.51 1.69 3.33

3 4 1 2 4 5 0 2 5 1 2 3

5. Autoencoder

Autoencoder neural networks represent a specific subspecies of ANNs [23,24]. An
autoencoder is an unsupervised neural network that, by utilizing an unlabeled dataset,
learns an effective method to compress and encode input data. After that, it is trained
with the aim of reconstructing an identical data set. An autoencoder consists of two basic
elements: an encoder and decoder. The encoder is the part in which the model learns how
to compress and reduce the dimensions of the input data, presenting them as encoded
information. The decoder is the part in which the model learns how to reconstruct the
data from the compressed record as close as possible to the original input data. The part
containing the compressed data is often called a “bottleneck” in the literature. After the
reconstruction of the input, the reconstruction error is calculated. Various mathematical
functions can be used as a tool to estimate error. Similar to the training and validation of
ANNs, the calculation of mean square deviations, commonly known as the mean squared
error (MSE), is frequently employed. The system’s performance has a direct impact on the
faithfulness of the reproduced data. When this error is minimized to a very low percentage,
the reproduced output closely resembles the data used during the network’s training phase,
approaching a near-identical replication. However, if a larger error is observed for the
learned autoencoder during the subsequent processing of a new data set, this data may
indicate disturbances in the input data set; that is, they may indicate that there has been a
significant change in one of the input parameters. This principle is used to detect anomalies
in energy consumption. So, the autoencoder is trained on the data from honest consumers
and then the new data are given as the input. If the input data contains an NTL, the MSE
tends to be larger than usual, especially when the NTL itself is substantial. A higher MSE
indicates a more pronounced anomaly in energy consumption, reflecting an increased
deviation from the expected or normal patterns. The input data are the time series of energy
consumption. The training time is 77 sec. Ideally, it would be advantageous to have a
dataset consisting of honest energy consumers to train the autoencoder. Subsequently, you
can input a new time series of measurements into the trained autoencoder and use the
mean squared error (MSE) as an indicator. If the MSE is significantly higher than expected,
it can serve as an alert for the presence of anomalies in the data, helping to identify potential
irregularities in energy consumption. This approach can effectively flag deviations from
normal patterns and contribute to anomaly detection. The algorithm is shown in Figure 7,
and the results are presented in Table 4. The autoencoder successfully detects all types
of anomalies with significantly higher MSE values. Anomaly type 1 indicates random
electricity theft. The MSE is less in the fifth type of anomaly because it only reduces the
peak loads. So, the biggest NTLs and MSE values are in anomaly type 4, followed by
3 and 2.

Table 4. MSE of autoencoder for different types of anomalies.

Anomaly No 1 2 3 4 5

MSE 5.64 4.82 × 104 3.82 × 105 6.92 × 105 9.59 × 105 5.22 × 103

The frequency error is recorded as 0% since the autoencoder consistently identifies
anomalies in each case. The mean squared error (MSE) values presented in Table 4 and
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depicted in Figure 8 affirm the successful detection of NTLs and electricity theft. Addition-
ally, Figure 8 illustrates that there is no clear rule governing how the MSE is directly linked
to the type of anomaly. As a result, the application of the autoencoder cannot precisely
determine the type of anomaly, but it effectively indicates the magnitude of NTLs and the
extent of energy theft.
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6. K-Mean

One of the unsupervised ML algorithms that is often used for clustering is the K-mean
algorithm. The K-mean algorithm is an optimization technique aimed at categorizing
entities into distinct groups [19,25,26]. Each entity is meticulously assigned to a particular
cluster, driven by a pursuit of precision. This entails achieving two pivotal cluster attributes:
intra-cluster homogeneity and heterogeneity. Homogeneity indicates that the data points
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exhibit a remarkable degree of resemblance in the same cluster. Heterogeneity indicates
disparities among the data points across different clusters and helps in demarcating the
boundaries between them. The K-means algorithm provides a valuable perspective for
gaining a deeper understanding of the characteristics within each cluster. At the heart of
the K-means algorithm lies an iterative process that partitions entities into clusters based
on similarity. This cyclic process involves the integration of freshly introduced entities with
pre-existing groups. The existing clusters evolve through expansion, absorbing new entities.

In the execution of a cluster analysis, a fundamental aspect is the quantification of
the similarity between two entities. This quantification relies on the traits they possess,
which are condensed into a measure known as the Euclidean distance, calculated using the
following formula:

dE(x, y) = ∥x − y∥ =

√√√√ n

∑
i=1

(xi − yi)
2

= dE(y, x) (5)

where x = (x1, . . ., xn) and y = (y1, . . ., yn) are attribute values of two objects of length n. In
this implementation, x and y are the values of the six above-mentioned statistical indicators.
To achieve the optimal performance, cluster algorithms necessitate data normalization to
mitigate the disproportionate influence of attributes with larger ranges on the outcomes. As
suggested in [27], one of the proposed normalization solutions is min–max normalization,
which is defined as follows:

x∗ =
x − min(x)

range(x)
=

x − min(x)
max(x)− min(x)

(6)

The idea is to use this algorithm on a database of created statistical indicators for
different cases of honest consumers and five types of anomalies. The K-mean based on the
values of the statistical indicators should divide the consumers into six different clusters
in coordination with theft types. The proposed algorithm is depicted in Figure 9. In this
context, the new consumption data, which generate a fresh set of statistical indicators, will
serve as the new input and be incorporated into one of the existing clusters. Consequently,
the methodology will flag NTLs if the new data do not align with the characteristics of
the first cluster. The cluster number will provide an indication of the anomaly type, with
each cluster center corresponding to a specific anomaly type. This approach leverages
clustering to categorize and identify different types of anomalies based on the similarity of
statistical indicators.

Figure 10 illustrates the clusters within a subspace delineated by three indicators.
While this three-dimensional depiction provides a visual understanding, it is crucial to
acknowledge that the clusters are delineated within a multidimensional realm. Within
this space, each statistical indicator corresponds to one dimension. The points cannot be
clearly seen in Figure 10 because they are very close to each other. Upon evaluating the
algorithm’s effectiveness through simulations involving the various types of theft, it was
observed that the algorithm tends to group honest users together with the fifth anomaly,
which corresponds to the sixth group among the clusters. This outcome aligns with our
expectations, as the fifth anomaly exhibits the least deviation from the behavior of honest
consumers compared to the other anomalies. With a test dataset comprising 6000 samples,
the algorithm missed 556 instances, resulting in an error frequency of approximately 9.26%.
This finding underscores the algorithm’s ability to identify and differentiate anomalies,
even in cases in which they closely resemble honest consumer behavior. With an increased
volume of data and consumers, along with a higher occurrence of anomalies and a greater
number of typically honest consumers of electrical energy, the K-means algorithm ought to
analyze a larger number of clusters.
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7. Results and Comparison

A comparison of the five presented methodologies, using an example involving
six consumers, is presented in Table 5. The inputs consist of measurements from these
six different consumers, each of which represent honest consumers, without NTLs, as well
as five specific types of energy theft anomalies. All the machine learning methodologies
are implemented using the Python programming language, while all the illustrations and
images are generated using MATLAB 2023b software. As explained in this paper, only
the autoencoder uses the direct time series of energy consumption measurements, while
the other methodologies use the statistical indicators as inputs, as they have shown a
better performance with them. The output of the autoencoder is the MSE, which indicates
the dishonest consumers without error but cannot detect the anomaly type. So, the au-
toencoder successfully detect all anomalies but cannot detect the type of anomaly. For
this example and test scenario, the statistical methodology fails to detect the second and



Energies 2024, 17, 1580 14 of 17

the fifth anomaly, as it does not meet the conditions outlined in the second section of
the paper. On the other hand, the ANN successfully identifies all consumer types with
a frequency error of 7.62%. The ANFIS misses the first type of anomaly, resulting in a
frequency error of 11.11%. The K-means algorithm, however, groups the honest consumers
with the fifth anomaly, leading to a frequency error of 9.26%. Both the K-means algorithm
and the ANN exhibit similar error rates and are equally effective in detecting NTLs and
identifying the type of anomaly. The unsupervised methodology prevails because it does
not require knowledge on which consumers are honest and which are not. Table 6 presents
a comparison of the ML algorithms. The disadvantage of all the algorithms, except for
the autoencoder, is that they do not utilize direct energy consumption measurements. The
other algorithms yield better results when utilizing statistical indicators as inputs, but
they require additional processing time for these indicators. However, the autoencoder is
limited in its ability to detect the type of dishonest consumer. Among the algorithms, the
statistical methodology exhibits the highest frequency error, while the ANFIS fails to detect
the first type of anomaly. Both the K-means algorithm and ANN demonstrate superior
results in detecting dishonest consumers and their types. One limitation of applying such
methodologies is the necessity of an adequate database within the distribution power
system. Additionally, the statistical method requires the understanding and reasoning
of an energy engineer. For other machine learning methods, mathematical reasoning is
essential, yet the described application algorithm allows for straightforward implemen-
tation across various programming languages. The robustness of AI algorithms against
variations in electricity consumption data characteristics, such as seasonality or changes
in consumer behavior, largely depends on the representation of training data and the
selection of statistical indicators. If the training dataset adequately captures the diversity
of electricity consumption patterns across different seasons and consumer behaviors, the
algorithms are likely to exhibit a greater robustness. Including data from various time
periods and demographic regions can enhance this aspect. In this paper, we analyze data
from 91 consumers with a 15 min interval over one year. However, different resolutions
of data and a larger number of consumers will necessitate longer training times but yield
more robust AI models.

Table 5. Inputs for testing of methodologies.

Indicators Honest 1. anom. 2. anom. 3. anom. 4. anom. 5. anom.

a1 53.41 4.37 × 1015 9.12 × 1015 6.41 × 1015 7.56 × 1015 5.61 × 1015

a2 0.0423 0.0356 0 0 0 0.4833
a3 8.47 9.27 22.31 13.66 14.30 9.77
a4 1.51 1.21 1.63 1.20 1.15 1.46
a5 95.66 70.36 76.14 77.66 61.46 85.67
T 109.16 103.67 87.95 70.20 60.44 104.48

Statistical yes yes no yes yes no
ANN 0.33/0 0.86/1 2/2 2.88/3 3.99/4 5.02/5

ANFIS 0.41/0 0.39/0 1.69/2 2.49/3 4.33/4 4.51/5
Autoencoder 5.64 4.82 × 104 3.82 × 105 6.92 × 105 9.59 × 105 5.22 × 103

K-mean 0 2 3 4 5 0
For ANN and ANFIS, the first values show model output and the second values indicate anomalies.

Table 6. The comparison of ML algorithms.

ML Algorithm Frequency Error [%] Detection of Theft Detection of Anomaly Type

ANN 7.62 Yes Yes
ANFIS 11.11 Yes Yes
Autoencoder 0 Yes No
K-mean 9.26 Yes Yes
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The selection of statistical indicators plays a crucial role in the performance of AI
algorithms because they can effectively capture the nuances of electricity consumption data
across seasons and changing consumer behaviors. In this way, AI algorithms will be better
equipped to generalize unseen variations. Techniques such as dropout (in neural networks)
or rule pruning (in the ANFIS) can help mitigate overfitting and improve the generalization
performance. Regularization techniques encourage the model to learn more robust and
generalizable representations from the data, making them less sensitive to variations.

K-means clustering might be sensitive to outliers or noisy data. Preprocessing steps
such as data scaling or outlier removal can enhance its robustness against such varia-
tions. Periodically retraining AI algorithms with updated data can help them adapt to
evolving consumption patterns and consumer behaviors, ensuring that the models re-
main relevant and effective over time, even with the changing characteristics of electricity
consumption data.

Combining predictions from multiple AI models trained on different subsets of data
or using different algorithms can enhance their robustness. Ensemble methods can help
mitigate the weaknesses of individual models and provide more reliable predictions across
diverse scenarios.

The larger volume of the distribution power system and its complexity increase the size
of the database and the number of consumers that need to be analyzed. The scalability of the
proposed AI techniques is crucial for their practical applicability in handling larger datasets.
The ANN can be scaled relatively well to handle larger datasets because advancements in
hardware, such as parallel processing and distributed training frameworks, have enabled
the efficient training of larger neural networks. ANFIS models generally have a simpler
structure compared to ANNs, making them more lightweight and potentially easier to scale.
Autoencoders are adept at learning compact representations of data, which can be beneficial
for handling large datasets by reducing their dimensionality without a significant loss of
information. The K-means algorithm is known for its computational complexity, which is
linear with the number of data points, making it suitable for large-scale applications.

The K-means algorithm can be parallelized efficiently but is sensitive and may struggle
with high-dimensional data or datasets with irregular cluster shapes. Despite their scalabil-
ity advantages, the presented AI models may encounter challenges with very large and
high-dimensional datasets due to limitations in memory, processing resources, and power.

Ultimately, the choice of methodology should align with the database that the dis-
tribution system operator (DSO) possesses and the desired format of the results. Each
algorithm has its own application and suitability, contingent on one’s specific requirements
and objectives.

8. Conclusions

Our comparative analysis of five distinct methodologies for anomaly detection and
non-technical loss (NTL) identification reveals a nuanced picture of their strengths and
limitations. The main advantage of this paper is its detailed explanation of the application
of these methodologies and their limitations in real applications.

While the autoencoder excels in pinpointing dishonest consumers without error, it
lacks the ability to specify the type of anomaly. In contrast, the ANN emerges as a robust
choice, successfully detecting all consumer types with the smallest frequency error. The
ANFIS demonstrates a solid performance but falls short in capturing the first type of
anomaly. The K-means algorithm is effective in detecting NTLs, occasionally misclassifying
honest consumers with the fifth anomaly. The artificial neural network (ANN) accurately
identifies all consumer types with a frequency error of 7.62%, while the K-means algorithm
exhibits a slightly higher error rate of 9.26%. However, the ANFIS system fails to detect
the initial anomaly type and demonstrates a frequency error of 11.11%. The preference for
unsupervised methodologies like K-means and ANN arises from their independence from
prior knowledge of consumer honesty. Ultimately, the suitability of these methodologies
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hinges on the specifics of the DSO’s database and their desired result format, underscoring
the need for a tailored approach to anomaly detection in electrical distribution networks.

Our future work will be focused on creating software applications for DSOs and trying
to use other AI techniques for the same purpose. In the implementation of AI techniques,
existing DSO network management frameworks may require modifications to software
platforms, data transmission, and workflow processes. In the future, DSOs need to ensure
integration and compatibility with existing systems and protocols. Using software, DSOs
can plan on-site inspections to catch dishonest customers.

Author Contributions: Methodology, software and writing—original draft preparation: M.Ž.; Con-
ceptualization; validation and writing—review and editing: G.D. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by [European Union] grant number [101079200] and the APC
was funded by [the same project].

Data Availability Statement: Data is unavailable due to privacy restrictions of DSO and consumers.

Acknowledgments: This research has received funding from the European Union’s HORIZON-
WIDERA-2021-ACCESS-03 under grant agreement No. 101079200.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Choksi, K.A.; Jain, S.; Pindoriya, N.M. Feature based clustering technique for investigation of domestic load profiles and

probabilistic variation assessment: Smart meter dataset. Sustain. Energy Grids Netw. 2020, 22, 100346. [CrossRef]
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