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Abstract. This paper presents a novel Ant Colony

Optimization (ACO) approach to optimize electric vehicle (EV)

charging scheduleg, specifically focusipg on minimizing | [3], they propose the development of hybrid
tardiness.  Addressing real-world constraints such as power eaneyristics, inspired by the proven effectiveness of
limitations and load balancing, the proposed ACO algorithm such combinations in addressing numerous scheduling

effectively explores the solution space. Inspired by ant foraging - . .
behaviour, the method strategically utilizes pheromone trails to problems. Specifically, they introduce a GRASP-like

guide the optimization process. Validation with actual EvV ~approach and a memetic algorithm, both tailored for
charging data underscores the algorithm's performance in Utilization within the Variable Neighborhood Search

minimizing tardiness. The study focuses on the significant impact framework. To solve the optimization problem, [4] adopt
constraints have on the optimization problem, shedding light on three metaheuristic algorithms, including particle swarm
their role in shaping efficient charging schedules. It studies the gptimization (PSO), Salp swarm algorithm (SSA), and
difference outcomes of implementing the same constraints in  grithmetic optimization algorithm (AOA). [5] defined the
different ways. This research contributes to the elaboration and objective functions for charging cost minimization, load
development of new and efficient solutions that will help . P L
promote the adoption of electric vehicles. variance minimization, and power loss minimization. The
multi-objective problem was solved by the Whale
Optimization Algorithm (WOA).

Key words. Electric Vehicles, Ant Colony
Optimization, Constraint Implementation, Tardiness
Optimization.

[6] uses Ant Colony Optimization (ACO), a
metaheuristic that has gained prominence as a powerful
metaheuristic approach for solving combinatorial
. optimization problems inspired by the foraging behaviour
1. Introduction of ants. Its ability to explore complex solution spaces and
adaptively search for optimal solutions makes it an
The widespread adoption of electric vehicles (EVs) attractive candidate for addressing the_ abpve mentior_1ed
represents a promising solution towards achieving proplem. However, the _;uccessful application of ACQ in
sustainable transportation systems. However, the Solving the problem critically depends on the effective
integration of EVs into the existing infrastructure poses IMPlementation of constraints within the optimization
significant challenges, particularly in managing their framework. ACO was used by [7] in an off-line electric
charging requirements efficiently. The Electric Vehicle Vehicle (EV) scheduling problem for cloud-based parking
Charge Optimization Problem emerges as a critical CP€rators, that a-priori accept parking reservations for
research area aimed at optimizing the charging schedules EVS requesting charging services during their stay.
of a parquet of EVs while considering various constraints
such as maximum power and power imbalance[1][2].
Thus, this problem can be address as a tardiness
minimisation problem. The tardiness minimization
problem is a type of scheduling problem where the
objective is to minimize the total tardiness of jobs or tasks
in a given schedule. Tardiness refers to the amount of time
by which a job or task is completed later than its due date.
In other words, it measures how late a job is finished
beyond its specified deadline.

This paper presents a comprehensive analysis of
constraint implementation in the context of the EV

charging optimization using Ant Colony Optimization.

Through rigorous experimentation and analysis, it
provides an insight into the challenges and opportunities
associated with the different ways of incorporating
constraints into the optimization process and offer
recommendations for enhancing the effectiveness.



2. Electric Vehicle Charge Optimization

This study addresses the scheduling challenge arfyoig
a fleet of electric vehicles (EVs) at a stationmiimize
total tardiness, as expressed in (1). In schedyinflems
like this one, tardiness represents the amountnté by
which a job finishes after its due date. This ipitglly
seen as a penalty or cost incurred due to late letiop. If
a job finishes early, it is not considered tardpefefore,
tardiness is inherently non-negative, as can be seél).

Creating a feasible and efficient schedule proves

challenging due to physical and power constrainttha
charging station, including the maximum contraqteder
and power imbalance limits between electric fedohers.
Thus, the focus of this paper is to obtain the eaqge in
which EV’s have to begin their charge, in order to
minimize tardiness. When tardiness is zero, noclelis
left partially charged.

(1;;=1 max{O, CT; — d]-}

Where:
CT;: charge completion time of vehicle j
d; : due date of vehicle |

§: assigned starting time for vehicle |
p;: charging time for vehicle |

After defining the objective function, it becomescassary
to outline the constraints that will govern theiojptation
process.

The first constraint is the maximal power availatuethe
charge of the vehicles. The layout of the electar
charging station features three charging
equipped with multiple points that also serve asgbe
parking spaces, allowing simultaneous car battbayging
during parking. The power grid receives energy fram
three-phase source with a 400 V voltage betweesgsha
Each charging point (P connects to a single-phase,
supplying energy at 230 V and 5 kW. This setupvedl@

maximum number of vehicles to charge concurrently

within a line, provided it stays within the contied power
limit, as expressed in (3).

The second constraint consists on maintaining anced
consumption across the three lines, which is cluia
prevent grid imbalances, as described in equa@nhand
(5). Grid imbalances could lead to higher energysés
and decreased transmission efficiency. Thus, irs thi
respect, it is necessary to comply with Spanishiledipns
(BOE, 2013), as large imbalances without supplogrsent
may result in penalties for the customer [7].

Ploxf <Ni={1,..,L} (3)

Pi _i_yPi L
|Zj:1 xj=Yq=1 qu

<ALl={1,...,L}Li # 1 (4)

lines, heac

; {1, if charging point j on line i is active;
xj = :
J 0, otherwise;

(5)

Where,

X;: is the state of the charging point j
t;: the arrival time of vehicle j

N: number of active charging points
i: number of lines

j: number of vehicles

In summary, with "i"' representing the number ofebn
each line connects to "Pi" charging points, and the
variable "N" stores the count of active chargingnfm
The station's design harmonizes efficiency, regujat
compliance and user convenience.

3. Benchmark definition

Upon a car's arrival at the parking facility, calcdata
needs to be gathered, including the arrival time,
remaining charging time for reaching a full 100%gje
(factoring in the 5 kW charging power and 50 kWh
battery capacity), and the due date for the caratate
the premises.

The Benchmark set used in this study was propoged b
[1] and used by [6]. The three parameters showrveabo
follow the following normal or uniform distributienas
shown in the tables below (Table I, Table Il, Tablg
The first column of the tables shows the percentaige
cars arriving at the car park and the second colsinoavs
the distribution that each group of cars followscdn be
seen that Table Il does not directly show the remgi
charging time to charge the battery of the cansiag at
the car park to 100% (N(C,D)). In order to calcelttis
data, the equations (5) and (6) have been used.

(100-A4)+0.01+60*BatteriesCapacity

Cc=
ChargingPower
(6)
__ Bx0.01+60+BatteriesCapacity
- ChargingPower
(7)
Where,

C: time it takes to charge the batteries

A: current battery charge level (%)

D: time it takes to discharge the batteries
B: current battery charge level (%)

Table I. — Vehicle Arrival Time

% VEHICLES ARRIVAL TIME (MINUTES)

10 U (0,1440)
20 N (510,15)
10 N (720,15)

|
50 | N (1170,15)
10 | N (1350,15)



Table II. — Vehicle Initial Battery Charge Percentage
% VEHICLES INITIAL CHARGE (%)

10 N (80,10) -> N(A,B)
30 N (50,15)

30 N (35,7.5)

30 | N(12,6)

Table lll. — Vehicle Due Date

% VEHICLES DUE DATE (MINUTES)

10 | N (240,120)
30 | N (360,120)
30 N (480,120)
30 N (660,120)

4. Ant Colony System (ACS) Optimization

In order to solve the previously stated problens gaper
proposes ACS. Ant Colony System optimization is a
metaheuristic algorithm inspired by the foragingdoéour

of ants [8]. In this case, the algorithm utilizep@pulation

of artificial ants that construct solutions to tlgéven
problem.

On the one hand, the State Transition Rule showe@)i

governs how artificial ants make decisions durihg t
construction of solutions. If<, it favours exploitation,
else it favours biased exploration.

argmax [Ti]-]a * [ni]-]ﬁ ifq<q0
%P

i’; = % otherwise
21['[1)] *[n”]

(8)

Where,t; is the amount of pheromone on the edgesmgnd
represents the fitness, a heuristic value, in tlise the
inverse of the due date, as shown in (8) arehdp are
parameters controlling the relative importance of
pheromone versus heuristic information respectively

n=— ©)

" Due Date

On the other hand, the Global Pheromone Evaporation

Rule establishes the velocity at which pheromone
evaporates and accumulates, and it occurs aftdr aaic
completes a solution as expressed in equation (9).

It involves evaporating existing pheromones to $ateu

the natural decay process. The update is typically
expressed as:
T”=(1—p)T”+p*ATl] (10)

Wherep is the pheromone evaporation rate € (0, 1])
andA tij = 1/C, where C is the total tardiness for the best
solution.

In summary, Ant System optimization employs a
probabilistic state transition rule for ant moveinand a
global pheromone update equation to guide the kearc

optimal solutions while mimicking the foraging
behaviour of real ants and therefore it is suited the
constrained optimisation problem described in sacl
that this paper aims to solve.

5. Constraint Implementation

Constraint implementation is of paramount impor&airc

the efficiency with which solutions will be consttad in

the search space of the ACS, for this particulablam

of the EV, charging tardiness minimization. As #@sh
been stated, constraints regarding this partiquiablem

are defined in equations (3), (4) and (5). However,
adapting ACS to handle constraints can be done
following different strategies, and the choice degseon

the specific requirements of the optimization peoil

This paper proposes two different methodologies to
implement constraints in the above mentioned proble
The first approach is to implement a heuristic
methodology that discard solutions that concur in
constraint violations. During solution constructianis
essential to enforce adherence to constraints. iRepa
mechanisms can be applied if a solution violates
constraints, or local search algorithms can begnated

for effective refinement.

The second approach is to extend the objectivetifumc
with penalty terms, incorporating the cost of coaisit
violations. This ensures a balance between opttiiza
goals and constraint satisfaction. Alternativelyhe t
pheromone update mechanism can be refined to @nsid
both the objective function value and the degree of
constraint satisfaction. This adjustment influences
pheromone levels based on the overall quality of
solutions.

Considering all this, this paper focuses on conmgaa
heuristic  constraint implementation with  repair
mechanisms vs. including penalties for constraint
violation in the objective function calculation.

A. Heuristic implementation

After the virtual ants select a new component foe t
solution, it is verified whether it complies with
constraints (3), (4) and (5) or not. If it doespill be
added to the final solution, if not it will be descled and
the next best selected in its place.

sel ect edConponent =
vi rtual Ant s. sel ect NewConponent ()
if
i sVal i dConponent ( sel ect edConponent):

final Sol ution. add(sel ect edConponent)
el se:

di scar dConponent ( sel ect edConponent)
function isValidConponent (conponent):

return satisfiesConstraints(component,
constraintl, constraint?2)
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B.  Penalty implemention 50 |4 | o04] 05 1 § 08 3D 4405
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In this case, the penalties will be included in the
calculation of the fitness. This paper proposesatgn
(11) to do so. Hence, all penalties are accounecdahd
included in the equation. Each penalty counter is
multiplied by a weighting factor. The weighting fars Heuristic CP - Tardiness
provide more parameters that are possible to aitadapt
fithess values and help improve the search proddsuss 1500
the resulting equation for fithess calculation vebiog: 1000
1
n= Due Date+ApCp+AbCb (11) °00
0
Where, 1 4 7 1013161922252831343740434649

C,: power limit violations and

Cy: power imbalances and

Ap: weighting factor for power limit violations
. Weighting factor for power imbalances

6. Results
A. Heuristic implementation

In this case, the algorithm showed convergence
problems from the beginning. Many of the trials
resulted in tardiness values well over 1000min. The
best results obtained are shown in Table IV andlLFig
Fig.1 shows that in the three cases the algorithm
oscillates among the same values, regardless of the
parameterization. The best results are shown feesa

1 and 3. This is because the first one has a bigger
number of iterations and ants. Hence, it is able to
explore the search space better. In case three, the
value @ is lower and this favours exploration, so it is
easier that the algorithm randomly comes to a bette
solution. But this not due to an efficient search
process, and when executing again with the same g0
value, higher tardiness values were obtained. Tihus,
this case too, this better tardiness value of tase

can be considered an outlier.

The reason why the results are not good can be
appreciated in Fig.2. The pheromone distribution
through the search space is completely homogeneous.
Note that the elements in the diagonal of the
pheromone matrix have to be zero and are not part o
the search space. However, all the rest of theaiésn

in the search space are not accumulating much
pheromone, as many solutions are being discard due
to the hard constraints implemented. This has a
negative effect on the solution construction, bseau
exploitation is not helping conduct the search.
Parameterization that strongly favours exploratian
improve the obtained results, but the randomness in
the results makes it an undesirable method

Table IV. — Parameterization and results for heéigriSP

Ant | qo o |A|B|p N | Tardiness
No (min.)

Seriesl Series2 Series3 Series4

Fig. 1. Tardiness results for the Heuristic method

L
25

L L L I
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Fig.2. Pheromone distribution for the heuristic Inogtology
B. Penalty implemention

This case of constraint programming yields fardrett
results. The algorithm generally converges, obtains
solutions that do not violate constraints and & th
right parameterization is chosen, it obtains vergd
solutions. However, as it is often the case withOAC

it tends to get stuck in suboptimal solutions. The
best solution is obtained with g0 within the range
[0.4,0.6], that favours the balance between an
explorative and an exploitative search. The rgio

a, shows a better construction when the fitness is
favoured. However, a ratio 2:1 was more successful
in obtaining the best result than the ratio 5:1.
Therefore, it is crucial to maintain a careful bala
between exploration and exploitation. The
penalization constraint are equal and have high
values in Table V and Fig.3. In Table V. and Fig.5
penalization constraints have lower values and a
bigger weight is given to maximum power
constraints violations. Equal and higher constgaint
have shown slightly better results. Fig.4. showe th
pheromone distribution for the best solution. Ihca
be seen that this heterogeneous distribution avoids
stagnation and yields better solutions.



Table V. — Parameterization and results for per@Ry

Ant | qO 10 o B p N Ap Ab Tar.
No 0

50 5

0,6 0,5 1 2 0,3 30 50p 5Q0

335,y

50 3

0,4 05[] 1 0,8 30 500 500

(&)

362,84

50 3

0.75] 05] 1 5 0.8 30 50p 540

517,p

1200
1000
800
600
400
200

1 4 7 1013161922252831343740434649
e Seri@s] e Series? Series3

Fig.3. Tardiness results for the penalty method

5 10 15 20 25 30

Fig.4. Pheromone distribution for the penalty melfiogy

Table VI. — Parameterization and results for pgr@r Il

¥4

It Ant | qO 10 o B p N Ap Ab Tar.
No @)
50 5 0.3 0,5 1 2 0,8 30 200 100 340.
50 5 0.8 0,5 1 2 0,8 30 200 100 340.
50 5 0.6 0.5 1 5 0.8 30 200 100 346
50 5 0.6 0.5 1 5 0.4 30 200 100 584
1200
1000 . ‘
800 e
600 K
’O‘NW \ MA [V
400 “ Q. . ] 1 -
200
0

1 4 7 1013161922252831343740434649

Seriesl

Series2

Series3

Series4

Fig.5. Tardiness results for the penalty method II

7. Conclusion

This paper focuses on how constraints may sigmifiga
affect the outcome of an optimisation algorithm,_tliis
case an ACO algorithm used for tardiness mininosati
in the EV charging problem.

Constraint programming is a paradigm for solving
combinatorial problems that involve constraints rove
optimisation problems. It is particularly effectivier
problems with complex constraints, such as schegduli
This paper has proposed and implemented two differe
methodologies to program constraints

In the first case, a heuristic methodology has been
included in order to exclude all solutions involyin
constraints violation. It has been seen, that ia tase
ACO struggles to find feasible solutions. In soraseas,

the algorithm was not able to converge. In all satiee
search space exploration was very limited and
pheromone accumulated in the same paths from the
beginning. Therefore, the results that were aclievere

not good, with tardiness over 1000 minutes in many
cases. However, all solutions were strictly compudyi
with the established constraints.

In the second case, penalties were used for camstra
violation. Different weighting factors were usedr fo
imbalance constraint violations and maximal power
constraint violation. The first can be consideredhasoft
constraint, as it imbalances may sometimes occluVin
networks. However, the second one is a hard constra
and that is why higher weighting factors were uded.
this case, there were not convergence issues and th
obtained results were significantly better than tihe
second. This is because exploration and exploitatiere
better balanced and the search was better directed.

Thus, we can conclude that implementing constraints
through penalties in the fitness function calcolatis
more effective than taking a stricter or harderrapph.

The right methodology for constraint programmingraj
with a good parameterisation effort has a big erfice in
performance of ACO and should be considered cayeful
and tailored for the singularities of the optimisat
problem at hand.
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